If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-10=-5
We move all terms to the left:
x^2+6x-10-(-5)=0
We add all the numbers together, and all the variables
x^2+6x-5=0
a = 1; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·1·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{14}}{2*1}=\frac{-6-2\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{14}}{2*1}=\frac{-6+2\sqrt{14}}{2} $
| 0.46(8x-1.5)=-2(-2.6x-1.2) | | x^2+6x-10=5 | | 2.51x+7.53=15.06 | | -4(6-2p)=-2p-34 | | 14-2z=8 | | w/4=46 | | 5x+3(x+2)+4x-7x=-3x+4-(3x-2x) | | 6=3k-3 | | 3(3q-2)=2(2q+7 | | 4p-5=p+13 | | 8^2x=35 | | Y=-2x—4 | | x-62=125 | | 10x-8+5x=8 | | X•x=45 | | _x4-6=5 | | 8=-2/9(-6x+18) | | 1-7(5+7n)=17+2n | | 6=3+x4 | | 8=-2/9(-6x+2) | | 8=-2/9(-6x+18 | | 10p^2-54p-7=0 | | 123=45+12h | | 10=1-12v | | 3(2x-3)-2x=4x-9 | | 2x^2+16x=4 | | (-20-10x)=54 | | x^2+2x-44=6 | | (n-2)(180)/n=144 | | 2(3x+1)=4(x+1)+2x-2 | | 3(x-7)+2x=7x+11 | | 5x+15=10-5x |